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SOME OBSERVATIONS ON THE HOUBOLT-RAINEY AND
FLUTFER ONSET PREDICTION

By

Robert V. Doggett, Jr.

PEAK-HOLD METHODS OF

INTRODUCTION

In a paper presented at a flight flutter testing symposium in 1958 Houbolt and Rainey I proposed

a subcritical response method for flutter onset prediction that can be used either with sinusoidally vary-

ing forced excitation (shaker) or randomly varying forced excitation (turbulence). The method is suit-

able for both flight and wind-tunnel flutter testing. The analytical foundation of this method is straight

forward and simply requires the measurement of the amplitude of the response in the structural mode

important to flutter. The reciprocal of these amplitude measurements _u'e plotted against a flow parame-

ter such as density as flutter is being approached and the resulting curve extrapolated to the flutter con-

dition which occurs when the amplitude reciprocal equals zero. The method predicts a linear trend of

amplitude reciprocal with flow parameter. Seventeen years later in their summary report of an active

flutter suppression study, Sandford, Abel, and Gray 2 presented some results using a subcritical re-

sponse method they called the Peak-Hold Method. They noted that the Peak-Hold Method is similar to

the Houbolt-Rainey Method but did not offer any elaboration. As far as carl be determined no one has

made an explicit connection between the two methods, even though the Peak-Hold Method has become

a standard method used during flutter testing in the NASA Langley Transonic Dynamics Tunnel 3 which

is a major wind-tunnel facility in the United States for aeroelastic testing. 4

The purpose of the present paper is to examine the relationship between these two methods.

Although both methods can be applied to systems that are being either excited by sinusoidally varying

forces such as thosed produced by a shaker or by randomly varying forces such as those produced by

flow turbulence, the present discussion will focus on random excitation. There is no loss of

generalization by focusing on random excitation. In particular, the physical system that will be consid-

ered in discussing the two methods is a wind-tunnel flutter-model wing that is being excited only by

wind-tunnel turbulence. Neither method requires knowledge of the magnitude of the exciting force.

Both methods require the determination of the response of the system, amplitude of response in the

mode important to flutter, but the exact values of the response are not required by either method.

Consistent measurements of quantities proportional to the amplitude are all that are needed.

Furthermore, neither method can be used to determine the damping of the wing.

HOUBOLT-RAINEY (H-R) METHOD

The analytical development of the Houbolt-Rainey Method !, hereafter referred to as the H-R

Method, is based on an assumed mode solution of the system of differential equations that describe the



flutter behavior of a wing that is excited by external forces such as a shaker or turbulence. (What is

called turbulence here is referred to as gusts in ref. 1.) They developed a relatively simple expression

for the amplitude of vibration of the surface in the structural mode important to flutter. This expression

with both shaker and turbt, lence forces present is

Qs + PQt

a = Vf2A f (P _ Pf)
(1)

where Q is a generalized force, A is a generalized aerodynamic force that is a function of Mach number

and reduced frequency, V is the fluid velocity, p is the fluid density, and the subscripts f, s, and t refer

to flutter, shaker, and turbulence, respectively.

By inverting eq. 1 and separating the shaker and turbulence terms the following relationships

are obtained where the vertical bars on either side of a symbol are used to denote the magnitude of the

variable.

I',d- IQsl (Pf-P)
Shaker only (2)

I pfVf 2 IAfl

lal - IQtl (llp -I/Of )
Turbulence only (3)

Note that for the shaker only case (eq. 2) the amplitude is predicted to vary linearly with density

p as flutter is approached, whereas for the turbulence only case (eq. 3) the amplitude is predicted to

w_ry linearly with the reciprocal of the density. At flutter the magnitude of the amplitude lal would be
1

expectext to be very large so the term _ would approach zero. The relationships developed in ref.1 as-

sumed that the flow velocity is held constant while the density is varied as flutter is being approached.

Relationships similar to eqs. 2 and 3 hold, however, if both the velocity and density are varying simul-
1 2

taneously, that is, the dynamic pressure q = :2PV is being changed. In many instances this would

.!
likely be the case so it would be convenient to examine the variations ot _ with the dynamic pressure

(shaker case) or the reciprocal of the dynamic pressure (turbulence case). Of course, when q is being

varied the trends mayn-ot-_exactly linear because the Math number and tiie reduced frequency are

wlrying. In the neighborhood of flutter, however, it would be expected that the trends would be nearly

linear. Furthermore, it should be noted that the presence of Significant buffeting flows over the wing

may also cause the trend to deviate from being linear.
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These relationships, eqs. 1 and 2, provide a simple means to predict the flutter condition from

subcritical response measurements made during experiments when the wing is either excited by a

shaker or by flow turbulence. By measuring the dynamic response of the surface in the structural

mode important to flutter at several different subcritical flow conditions and then plotting the reciprocal

of these amplitude measurements versus the appropriate flow quantity, it is possible to extrapolate to the

flutter condition which is the flow condition at which the amplitude reciprocal becomes zero.

Some experimental resuhs from applying this method ure presented in ref. 1, and are repeated

hcrc in figure 1. Results are shown for a variety of wing configurations at subsonic and transonic

speeds. For these cases the method did accurately predict the flutter condition as long as the subcritical

response measurements were made within 20 percent of the flutter dynamic pressure. The amplitude

values needed by Houbolt and Rainey to apply the turbulence technique were determined by using auto-
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Figure 1. - Extrapolation to flutter onset condition using Itoubolt-Rainey Method. (Ref. 1.)
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spcctru (power spectral densities)of the response measured during the wind-tunnel tests. Because the

autospectra units were amplitude squared/Hertz, they had to convert, in effect, each measured spectrum

into an amplitude spectrum to determine the amplitude in the mode important to flutter. An amplitude

autospectrum is a spectrum for which the value of the spectrum at each respective frequency represents



the mean square value of the response at that frequency. The units of this spectrum are simply ampli-

tude units squared, say, for example, in. 2 The response amplitudes determined in this way are what

were used in ref. 1 to obtain the results presented in figure 1.

PEA K-I IOLD METI IOD

By the early 1970's it had become accepted practice during flutter testing in the Transonic

Dynamics Tunnel to use frequency analyzers to track response frequencies of models during the ap-

proach to flutter. Apparently Sandford had observed that there appeared to be a trend associated with

the amplitude of the spectral peaks, so his intuition led him to try what has become to be know as the

Peak-Hold Method. (The peak-hold function is built into most off-the-shelf transfer function analyz-

ers.) Following Sandford's lead other researchers have also used this method with varying degrees of

success. 3,5 Of course, no subcritical response flutter onset prediction method has yet been developed

that works accurately in all situations.

The basic measurement needed for applying this method is, like for the H-R Method, the ampli-

tude of the structural mode that is important to flutter. In this case, however, the needed amplitude in-

formation is obtained by using what is called a peak-hold spectrum. Although a peak-hold autospec-

trum (amplitude squared/Hertz) may be used, it is usually more convenient to used a peak-hold ampli-

tude spectrum, that is, a spectrum for which the ordinate values are the mean squares values of the re-

sponse amplitude. The use of an amplitude spectrum is appropriate because the response is limited to a

few discrete frequencies and is not broad band random noise. Next we will discuss some notions con-

cerning spectra, in particular, amplitude spectra and peak-hold spectra. The discussion is by no means

elegant, and is somewhat "schematic" in nature, but it should prove useful to readers who are not famil-

iar with spectral analysis. (There are many fine books available on time series analysis of random data.

See, for example, ref. 6.)

To aid in understanding a peak-hold spectrum let us consider a digital-signal analyzer with an

analysis bandwidth of N(Af) where N is an integer constant and Af is the frequency resolution.

Typically N would be of the order of several hundred. If, for example, N=200 and the frequency

b_mdwidth of interest was from zero to 50 Hertz, then the frequency resolution Af would be 0.25

I-Iertz. The spectrum is determined at N values of frequency, each wdue of frequency separated from

adjacent wdues of frequency by an amount Af. The signal is in effect passed through a series of N

"windows," or filters, that are Af wide and centered at the frequencies fN. The analyzer detemaines the

mean square value of the signal in each frequency window. The amplitude spectrum is the foundation

element of the peak-hold spectrt, m.

The process of determining a peak-hold spectrum proceeds as follows: An initial amplitude

spectrum of the wing response is calculated and its values stored in the analyzer memory. This spec-

trum and subsequent ones are obtained from very short time segments of the response so the spectrum
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representsthevariationof theresponseamplitudewith frequencyat an "instant"of time ratherthan

providingstatisticalinformationrepresentingtheoverallrandomprocess.Eachfrequencywindowhas

a uniqueloczitionin analyzermemory. In additionthespectrumisdisplayedonanoscilloscopescreen

for vistmlmonitoring. A secondamplitudespcctrunlis thendctemlinedandits valuescomparedwith

theinitial spcctrtuustorcdin memory.Thememoryisupdatedateachflcquencywindow for whichthe

valueof the new spectrumis larger thanthe valuestoredin memory. This processof determining

spectraandcomparingnew valueswith storedvaluesanddisplayingtheresultsis repeateduntil the

spectrumstoredin memoryis notbeingchangedasdeterminedby visualobservationof thedisplayon

theoscilloscopescreen.Experiencehasshownthattheoscilloscopescreenwill typicallyshowthatthe

spectrumchangesrapidlyat thebeginningof theprocess(perhapsthefirst 30secondsor so)andthen

appearsto remainunchangedastime passes.Oncethespectrun_hasbeenobservedto converge,the

spectrumcalculation-comparingprocessis stopped.Thespectrumthatis storedin memorynowis the

peak-holdspectrumandrepresentsthemaximummeansquareamplitudeof thewing responseateach

of theN frequenciesthatoccurredduringthetimethatthespectrawerebeingdetermined.Thesepeak

valuesareheldin memorythroughoutthisprocess,hencethename,peak-hold.

In applyingthePeak-HoldMethodto flutter onsetpredictionthisprocessis repeatedat several

differentflow conditions. It is hasbecomestandardpracticeto plot thereciprocalof theamplitudeof

thestructuralmodeimportanttoflutter versusdynamicpressureandthenextrapolatethis curveto pre-
1

diet theflutter onsetcondition.TheH-R Methodsuggeststhatexaminingthe_ trendwith therecipro-

cal of dynamicpressurewouldbeabetterchoicebecausethepredictedtrendis linear. If thetrendis in-
deedlinearwith thereciprocalof thedynamicpressure,thenthetrendis concavewith dynamicpres-

sure.Obviously,it is easierto extrapolatea lineartrendthanit is to extrapolateanon-lineartrend. This

is illustratedbythedatapresentedin figures2 and3. Thedatain thesefigureswereobtainedduringthe
flutter testsdescribedin ref. 7. Themodelwasa45°-sweepdeltawing. Themeasuredflutter dynamic

pressurefor thismodelwasabout46psf. Presentedin figure 2 is thevariationwith dynamicpressure

of themeasuredreciprocalof the response amplitude in the mode that w_ts important to fluttcr. The re-

sponse aml+litudc is the square r(_)t of thc value of the pc+tk in the spectrum thai (_'curs at the frequency

of the structt, ral model important to tlutter. Therelore, lal is the root mean square of the amplitude.

These data have been fitted with two curves, a linear least squares fit and a second degree polynominal

fit. The second degree curve fits the data better as would be expected if the trend of the amplitude is in-

deed linear with the reciprocal of q. The linear fit, however, gave a projection of the flutter dynamic

pressure, 47 psf, that is closer to the experinaental value, 46 psf. An important point to be made

here is that it is obvious that small changes in the second degree fit could make large changes in the

flutter onset prediction. Presented in figure 3 is the variation of the same amplitude reciprocal with the

reciprocal of the dynamic pressure. In this case the linear curve provides an excellent fit to the
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Figure 2. - Variation of the reciprocal of response amplitude with dynamic pressure.

data. The predicted flutter dynamic pressure, 51 psf, is about ten percent higher than the experimental

value, 46 psf. The second degree polynomial fit shown in this figure is almost the same as the linear

fit. Data of the type shown in figures 2 and 3, which are not untypical of wind-tunnel model subcritical

flutter results, indicate that it is easier to extrapolate the linear curve in figure 3 than it is to extrapolate
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the seconddegreecurvein figure 2. It is suggested,therefore,that in futureapplicationsamplitude

trendswith thereciprocalof thedynamicpressurebeusedratherthantrendswith dynamicpressure.

COMPARISONOFH-R AND PEAK-HOLDMETHODS

It appearsfrom theproceedingdiscussionthattheonly differencebetweentheH-R Methodand

thePeak-HoldMethodis in thespectrumusedtodeterminetheamplitude.HouboltandRaineyuseda

classicalautospectrum(powerspectraldensityin amplitudesquared/Hertzdeterminedby analogmeans)

becausethatwastheonly capabilitythatwasavailableto thematthetime theydid theirwork. To ob-

tain theneededamplitudedatathey,ineffect,convertedtheclassicalautospectrato anamplitudespec-

tra. (As ajunior researcherwho helpedacquiresomeof theexperimentaldatapresentedin ref. 1,the

authorhaspersonalknowledgethat this was thecase.) If they were doing their work today, they

wouldundoubtedlyuseamplitudespectradeterminedbydigitalmeans.Onecouldargue,however,that

theymightnotchooseto usepeak-holdspectra.Sothequestionof differencein spectrastill exists.The

following discussionaddressesthisquestion.

For thesakeof argumentlet usassumethattheturbulencethatis excitingthewing is a linear,

ergodicrandomprocesswithzeromeanvalueanda "nearly"normalprobabilitydistribution. A normal

probabilitydistributionis shownin figure4. Thisdistributionis presentedin termsof a variablewhich

LOWERs..
BOUND

I'(a/c0

1.0

-3 -2 -1 0 1 2 3

NEARIN
NORMAI.
DISTR1RUTION I

= a/_

Figure 4. - Normal probability distribution function.



is the ratio of the response a to the standard deviation c. These assumptions may appear to be restric-

tive, but they are in general representative of such physical processes. The notion of a "nearly" normal

probability distribution, however, is quite important to the following arguments so some clarification is

needed. Theoretically a process that has a normal probability distribution has a finite probability of ex-

ceeding any selected upper limit, no matter how large, and a finite probability of being less than any

selected lower limit, no matter how small. Natural processes, however, are generally bounded. The

dashed vertical lines in the figure are used to indicate upper and lower bounds. The dashed modifica-

tions to the normal probability distribution indicate how this function might change near these bounds.

The extreme values would be K_ and -K_ where K is a constant that is characteristics of the particular

random process. There are a variety of reason why physical systems have limiting values. Some of

these are nonlinear effects such as springs that harden when the deflection is increased beyond a cer-

tain value, pressures that cannot be lower than an absolute vacuum, work done that cannot exceed the

available energy, and motion of particles inside a container that cannot exceed the boundaries of the

vessel. Although bounded, many physical processes still exhibit characteristics of normal possesses

between their upper and lower limits. So, a process that has a "nearly" normal probability distribution

function is a process that generally exhibits many of the characteristics attributed to a normal process

except that it is a process that has both upper and lower limits. It is generally accepted that wind-tunnel

turbulence is a processthat exhibits such characteristics.

If one were to determine an amplitude autospectrum of the response of the wing to wind-tunnel

turbulence over a sufficiently long period of time (typically 30 to 60 seconds in most applications), a

spectrum would be determined wherein each point in the spectrum is equal to the mean square value of

the response at each of the N frequencies. If this time is sufficiently long, then the spectrum represents

the characteristics of the complete random process and not just what is going on a an instant of time.

Thus, if the spectrum had a peak at frequency fp, the value of the spectrum at fp would be equal to the

mean square amplitude at that frequency. Here this value would be equal to the square of the standard

deviation c at fp because the mean square value and the square of the standard deviation are the same

quantity for a process with zero mean value. It is important to understand that the standard deviation c

of that portion of the random response occurring at frequency fp is not the standard deviation of the to-

tal random process. If we were to determine a peak-hold amplitude spectrum, then a similar looking

spectrum would result. The amplitude autospectrum and the peak-hold spectrum would have peak val-

ues of amplitudes occurring at the same frequencies, but the magnitude of these amplitudes would be

different because the amplitudes of the peak-hold spectrum are maximum mean square values that occur

during the time that the spectra were being determined whereas the amplitudes of the autospectrum are

mean-square values representative of the entire random process. If the process did indeed have a nor-

mal probability distribution function then it would be probable for both extremely large and extremely

small values to exist and, therefore, the peak-hold spectra would not converge as it has been observed
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to do. Indeed,it could notco'nverge.Becauseof theupperandlower boundsthatareexhibitedby

physicalsystemsandbecausethepeak-holdspectrumprocessis conductedoverarelatively longtime,

it is highlyprobablethatamplituderesponsesof theorderof theextremevalueswill occur.Therefore,
themaximumresponseasobtainedby thepeak-holdspectramaybethoughtof asK2_2values,thatis,

meansquarevaluesthatoccurwhentheamplitudeof responseis neartheextremevalues. Thus,the
magnitudesof amplitudespectrum,whichare (y2 values, are related to the magnitudes of the peak-hold

spectrum, which are K2o 2 values, by the constant multiplier K 2. Because in applying either method the

absolute values of the response are not important, then there no need to know the value of K.

Therefore, there should be no difference in the results no matter which spectrum is used.

It is now clear that the Peak-Hold Method and the H-R Method are the same method. Because

there is an analytical foundation for the H-R Method, then there is an analytical foundation for the Peak-

Hold Method, verifying that Sandford's insight was very astute. So, the fact that the Peak-Hold

Method has proven to be a useful subcritical response techniques for flutter onset prediction is not just

fortuitous, it should be expected to be so, although like all subcritical methods, it will not be reliable in

all applications. Indeed, the Peak-Hold Method is not actually a "method." It is more precisely a par-

titular means by which the data required to use the H-R Method are obtained. In recognition of that fact

it seems appropriate that in the future the designation Peak-Hold Method should be replaced with the

more appropriate designation Houbolt-Rainey Method.

CONCLUDING REMARKS

A subcritical response method for flutter onset prediction developed by Houbolt and Rainey in

1958 has been compared with the Peak-Hold Method which was apparently first applied to flutter onset

prediction by Sandford, Abel, and Gray in the early 1970's. The rational argument presented shows

that the two methods are not different methods, but are actually the same method. So, because there is

an analytical foundation for the Houbolt-Rainey Method, then there is the same analytical foundation for

the Pcak-Ilold Method. Therefore, it is not jt, st fortuitous that the Peak-hold Method has proven to be a

useful tool in flutter onset prediction.

Further, it is suggested that, in applying the Peak-Hold Method in cases where turbulence is

used as the excitation force, the variation of the reciprocal of the response amplitude with the reciprocal

of the dynamic pressure be used to extrapolate to flutter onset rather than the variation with dynamic

pressure which is current practice because the linear trend which is predicted to occur for the former

case is easier to extrapolate to the flutter condition than the nonlinear trend predicted to occur for the

latter case. Finally, because the method is actually the Houbolt-Rainey Method, the Peak-Hold Method

being only a means by which the data needed to apply the Houbolt-Rainey Method are acquired, it is

suggested that the method be referred to in the future as the Houbolt-Rainey Method.
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